Logarithmic Function

	represent the	of the	function.
Go through the steps of	taking an inverse:		
Conversion Practice			
Write the following in	equivalent	form:	
•			
•			
•			
Write the following in	equivalent	form:	
•			
•			
two special cases:			
two special cases:			
•			

♦

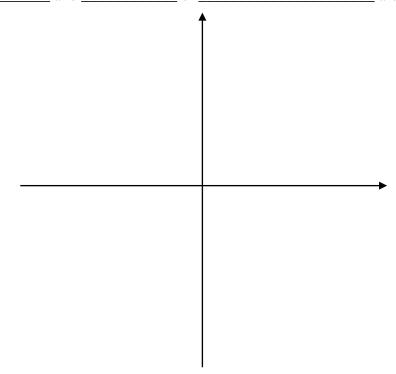
Evaluating Logarithms

ex. evaluate _____

Evaluating Logarithms				
tip: utilize	Laws			
ex. evaluate		Technique: se	t expression	to creat
		then	to an	
ex. evaluate				
ex. evaluate				

Special Logarithmic Properties			
	ex.	also	
	ex.	also	
Inverse Properties			
Growth Application using base e			
Growth	Decay		
ex. In, the	was		By,
population had to	·		
Construct an	that	the	
between and			
Step 1: determine			
Step 2: plug in to determine (take		digits)	

then P(t) =


Follow up: What was the ______ in _____? Round to 1 decimal place.

Follow up: By which _____ will the _____ reach _____?

Logarithmic Graph

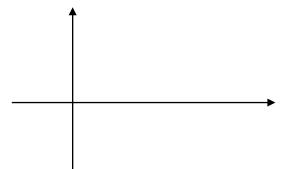
Recall: graphs of	reflect about	

Recall: _____ and ____ of ____ are swapped

exponent: logarithm:

domain:

range:


asymptote:

Do: sketch _____

clearly indicate locations of:

♦

♦

Log Laws			
More	logarithms can be _		_ in the following formats:
•			
•			
convert from one _	to the	to aid	in
	Condensed	Expanded	
Product Rule			
Quotient Rule			
Power Rule			
Product Rule Exa	mples		
ex. expand			
ex. expand			
ex. expand			
ex. condense			

ex. condense _____

MAT123 – Precalculus	Lecture Worksheet	Page 7
Quotient Rule Examples		
ex. expand		
ex. expand		
ex. condense		
Power Rule Examples ex. expand		
ex. expand	in	format, is
ex. expand		
ex. condense		nent gets becomes a

Expanding Logarithmic Expressions

ex. Expand ______ as much as possible

Product Rule

Quotient Rule

Power Rule

ex. Expand _____ as much as possible

Do: Expand _____ as much as possible

Condensing Logarithmic Expressions

ex. Evaluate _____

ex. Write _____ as a _____logarithm

ex. Fully condense _____

Do: Write ______ as a _____ logarithm

Do: Write _____ as a ____ logarithm

Greater	Than	Two	Terms
---------	------	-----	--------------

ex. Write ______ as a _____ logarithm